
PS2 Icon Format v0.5

c©2003 Martin Akesson (ma@placid.tv)

Contents

1 Introduction 2
1.1 License . 2
1.2 Legend . 3

2 Icon layout 3

3 Icon header 3

4 Vertex segment 3
4.1 Polygon layout . 5

5 Animation segment 5
5.1 Animation header . 5
5.2 Frame data . 5
5.3 Frame keys . 6
5.4 Composing an animation . 6

6 Texture segment 6
6.1 Textures . 6
6.2 Compressed textures . 7

7 History 7

1

1 Introduction

This document was created as a result of my project to create a open source
interface to the EMS USB cable1.

During this project I had to literally reverse-engineer the icon format aswell
as the .psu2 format and the USB communications protocol. All of this was very
time consuming and I wish there had been more information available on the
net. That is also why I now release this information so that others who seek to do
similar things can concentrate more on their work than on reverse-engineering
file formats.

This document will not describe how to actually render the data in an icon,
you will have to buy a good 3D book for this (OpenGL red book is nice). If you
use the ps2icon library available at http://ps2dev.placid.tv/ you can use that
data with OpenGL without any data conversion.

1.1 License

Copyright (c) 2003, Martin Åkesson All rights reserved.

Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

• Neither the name of the author nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

1Used to transfer data from PS2 memorycard to a PC via USB cable
2File format used by the original EMS software

2

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

1.2 Legend

I will use a few acronyms in this document to try to describe the different
datatypes used in icon structures. Unfortunately I am not fully sure of the
Float32 type . . .

s8, s16, s32 Signed 8, 16 and 32 bit integers

u8, u16, u32 Unsigned 8, 16 and 32 bit integers

f16 Float 16, read as s16 and divide by 4096

f32 Float 32.

2 Icon layout

A PS2 icon is made up of several sections that all appear in linear order. Icon
files always start with a icon header. The header is then followed by the actual
icon data starting with vertex coordinates followed by animation and texture
data.

Icon Header
Vertex segment

Animation segment
Texture segment

3 Icon header

The icon header (fig. 1) stores all the vital information we need to decode the
different data segments. From this we get the number of vertices contained in
the “Vertex segment” aswell as the number of animation shapes. We also get
information wether the texture data is compressed or not. The header is always
found at offset 0 in an icon file.

4 Vertex segment

The vertex segment contains data for all vertices in an icon. For each vertex
(fig. 2) there is one set of normal and texture coordinates and one set of RGBA
data. Depending on the number of animation shapes in an icon there is an equal
number of vertex coordinates for each vertex. This data is then repeated for
the number of defined vertices.

3

“Vertex coordinates” (fig. 3) for animations are stored sequentially thus
shape one corresponds to the first vertex coordinate and shape eight to the
eighth coordinate.

The normal for each vertex is stored directly following the last shape vertex.
Normals are defined just as vertex coordinates were defined so you can use the
same struct to read them. These are the normals used by the PS2 itself when
rendering the icons however some icons have very strange looking normals, keep
that in mind when you render them yourself and think they look strange.

The vertex normal is in turn followed by “Texture data” (fig. 4). This
defines the texture coordinates for this vertex. It also defines RGBA data for
this vertex.

Offset Type Description
0000 u32 PS2 icon file id = 0x010000
0004 u32 Animation shapes
0008 u32 Texture type (0x07 = uncompressed)
0012 u32 UNKNOWN, always ”0x3F800000”
0016 u32 Number of vertices, always a multiple of 3

Figure 1: Icon header structure

1 shape 4 shapes
Vertex coordinates (1) Vertex coordinates (1)

Vertex coordinates (2)
Vertex coordinates (3)
Vertex coordinates (4)

Normal coordinates Normal coordinates
Texture coordinates Texture coordinates

Vertex RGBA Vertex RGBA

Figure 2: Vertex structure

Offset Type Description
0000 f16 Coordinate X
0002 f16 Coordinate Y
0004 f16 Coordinate Z
0006 u16 Lighting on/off ????

Figure 3: Vertex coordinate structure

Offset Type Description
0000 f16 Texture X coordinate
0002 f16 Texture Y coordinate
0004 u8[4] RGBA

Figure 4: Texture data structure

4

4.1 Polygon layout

Polygons in PS2 icons are always made up out of three vertices thus forming
a triangle shaped polygon. Since vertices are listed sequentially it is very easy
to build a polygon simply by reading vertex data three at a time. Extract
all vertex data grouping them in threes until you have reached the end of the
defined vertices. Rendering this data with help of OpenGL or similar should
give you a nice wireframe of the icon.

5 Animation segment

This segment was a big mystery until I found a tool that extracted icon data
to a text file, this is where I got some of the names for various data items.
Unfortunately the tool has no known author so there is noone to give credit.

The segment is built up of a header and frame data. Each frame data holds
a number of frame keys. An icon with only one frame will thus only have one
set of frame data and a four frame animation will have four fram data sets.

There is a different ammount of frame keys for each frame data so you must
read this for each frame.

Animation Header
Frame data
Frame keys
Frame data
Frame keys

. . .

5.1 Animation header

The animation header (fig. 5) tells us the frame length, animation speed, play
offset and the number of frames. I have yet to really figure out what these all
mean except for the number of frames which is needed to iterate through each
frame data.

Offset Type Description
0000 u32 ID tag = 0x01
0004 u32 Frame length
0008 f32 Anim speed
0012 u32 Play offset ?
0016 u32 Number of frames

Figure 5: Animation header structure

5.2 Frame data

The frame data (fig. 6) follows directly after the “Animation header”. Each
set of frame data defines what shape to use for that particular frame and the

5

number of frame keys (fig. 7). The number of frame keys may be different for
each new frame data.

Offset Type Description
0000 u32 Shape id
0004 u32 Number of keys
0008 u32 UNKNOWN
0012 u32 UNKNOWN

Figure 6: Frame data structure

5.3 Frame keys

. . .

Offset Type Description
0000 f32 Time
0004 f32 Value

Figure 7: Key data structure

5.4 Composing an animation

To animate an icon you should display the corresponding shape for each ani-
mation frame. Timing values should be possible to figure out or simply use a
generic delay. Eight frames per second seems to be a good start . . .

6 Texture segment

Textures do not have any header since they always are 128x128x16 in size. They
are encoded using the Playstation r©TIM image format3.

6.1 Textures

Uncompressed textures can be converted to 32bpp RGBA data by simply mul-
tiplying each red, green and blue value by eight and setting alpha to 255. You
can use the table below (fig. 8) to create your own function for this, remember
to convert input data to big endian4 before applying conversion.

3Klarth has a description of the image format at http://rpgd.emulationworld.com/klarth
4See Klarths document for more information

6

6.2 Compressed textures

Compressed textures are compressed using a very simple RLE algorithm. The
first u32 in texture data is the size of the compressed texture data. The actual
data follows directly after and is always u16 format.

The first u16 is always an RLE code, this code is then used to decode the
actual data that follows.

• If this code is less than 0xFF00 then you should treat it as a replication
counter. This means you must replicate the following u16 data as many
times.

• If the RLE code is greater than or equal to 0xFF00 then you should treat
it as a data length. To get the length of data to copy you use (0xFFFF -
code), this gives you a length between 0 and 255. Now copy the length of
u16 data as they are.

Repeat this until you have exhausted the compressed data and you should
if all goes well have a 128x128x16 TIM image reade for use.

7 History

• Version 0.5 - Mar 19, 2003
Major cleanup and lots of additional info
Changed to a BSD license

• Version 0.4 - Feb 17, 2003
Modified animation section, thanks to anonymous

• Version 0.3 - Feb 14, 2003
Corrections on vertex and normal coordinates
Figured out the compressed texture format

• Version 0.1 - Feb 12, 2003
Started working on this document

Input Apply conversion Output
16bit data 8 * (input AND 0x1F) 8bit red
16bit data 8 * ((input >>5) AND 0x1F) 8bit green
16bit data 8 * (input >>10) 8bit blue
NULL 0xFF 8bit alpha

Figure 8: TIM conversion table

7

